
ReChan: An Automated Analysis of Android App Release Notes
to Report Inconsistencies

Daniel Domínguez-Álvarez
IMDEA Software Institute

Spain
University of Verona

Italy

Daniel Toniuc
IMDEA Software Institute

Spain

Alessandra Gorla
IMDEA Software Institute

Spain

ABSTRACT
“What’s new?” This is what users wonder when they see the notifi-
cation that a mobile app has just been updated on their device. New
releases may involve simple bug fixes, or may include new features
that users are eager to try. Regardless of the change, users do want
to know what are the differences with respect to the release that
have been using so far. The Google Play store has a visible section
for each Android app that clearly describes the changes that affect
the latest release. This description, however, is curated by develop-
ers, and may not match the actual changes in the binary code. This
paper presents ReChan, a novel technique aiming to automatically
detect mismatches between release notes of Android applications
and the actual changes in the code. We define a taxonomy of 9
release categories by manually tagging 1,200 real samples, and we
present our solution to automatically classify release notes written
in English. ReChan then implements specific analyses to detect
such changes in the code, and compares the analyses outcome to
detect mismatches. ReChan achieves a precision, recall and f-score
of 84.9% on the manually crafted ground truth of three open source
apps. Experiments on a dataset of 12,706 closed source Android
apps show that developers tend to correctly report changes due to
bug fixes and new features, but omit changes that affect the list of
requested permissions, the UI and other content that the app uses.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software maintenance tools.

KEYWORDS
release notes, mobile apps
ACM Reference Format:
Daniel Domínguez-Álvarez, Daniel Toniuc, and Alessandra Gorla. 2022.
ReChan: An Automated Analysis of Android App Release Notes to Report
Inconsistencies. In IEEE/ACM 9th International Conference onMobile Software
Engineering and Systems (MOBILESoft ’22), May 17–24, 2022, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3524613.
3527819

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9301-0/22/05. . . $15.00
https://doi.org/10.1145/3524613.3527819

1 INTRODUCTION
With every new release of a mobile app, developers write a release
note describing its major changes. This is the main communication
channel for developers to inform users about new features, bug
fixes or improvements of existing functionalities. It is also the main
channel for developers to convince users to upgrade an app to the
latest release. Release notes, however, are curated by developers,
and there are no constraints nor guidelines for them to provide an
accurate description. It thus happens that they either leave it empty,
or they copy the text from a previous release note, or even provide
a default description that does not match the actual changes in the
binary code. This practice can be more or less critical depending
on what information is omitted. It can vary from collecting sen-
sitive data without clearly mentioning it, requesting unnecessary
permissions, to more harmless changes such as changes in the mon-
etization policies, small UI tweaks or performance improvements.

An example of a clear mismatch between the release note and the
actual code changes comes from the popular Whatsapp application
at the end of May 2019. At that point in time, a serious security
breach was found in the application, and Facebook issued a secu-
rity advisory [1] urging users to update their app. The advisory
mentioned that iOS users should have updated to v2.19.51 in order
to have the vulnerability removed. However, looking at the What-
sapp’s version history in the App Store (Figure 1), we can see that
the message for the update mentions changes regarding how users
can view stickers. There may be different reasons why Facebook

Figure 1: Inaccurate description of a Whatsapp release with
a major vulnerability fix in iOS.

developers did not explicitly mention the real reason why users
should update their app. One could be that users tend to rush to
update when new features are available, but usually postpone a
security update because it does not give immediate gratification.
Another reason could be that developers simply forget to update the
release description, and keep a previous one. Nevertheless, wrong
descriptions in release notes can seriously confuse app users and
mobile app analysts, as they are completely misaligned with reality.

In this paper we present ReChan, the first attempt to automati-
cally detect a mismatch between the natural language release note
of a mobile app and the actual changes in the code. ReChan is meant
to be used by mobile app market managers to ensure the quality

https://doi.org/10.1145/3524613.3527819
https://doi.org/10.1145/3524613.3527819
https://doi.org/10.1145/3524613.3527819

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Daniel Domínguez-Álvarez, Daniel Toniuc, and Alessandra Gorla

and veridicity of release notes even when developers do not resort
to automated techniques to generate them [2, 3].

We limit the scope of this work to Android apps, since code
analysis of the binary file is more accessible than other platforms
(e.g. iOS).

Concretely, ReChan automatically analyzes the natural language
descriptions of what has changed with a new release of an Android
app, and automatically classifies them. In a second step, ReChan ana-
lyzes the actual changes in the app binary code to revealmismatches,
which are often due to omissions in the release descriptions.

We retrieve a dataset of 29,647 releases from the Google Play
store, published between January and mid June of 2018 to evaluate
ReChan. Among many solutions to automatically classify release
descriptions, specifically, a rule-based approach, a solution based
on binary relevance with two classification algorithms, and an
innovative approach which combines short text topic labeling with
binary relevance, our evaluation shows that the best approach is
the rule-base strategy.

ReChan implements different static analyses to detect type of
changes such asminor bug fixes, UI improvements and new features,
and reports when the classification produced by the binary analysis
differs from the outcome of the natural language analysis.

Experiments show that developers tend to correctly report changes
due to bug fixes and new features, but omit changes that affect the
list of requested permissions, the UI and other content that the app
uses.

The main contributions of this paper are the following:
• We present a taxonomy of release notes of Android applica-
tions.

• We present a novel technique to automatically classify the
description in natural language of a mobile app release.

• We present a combination of static analysis techniques that
can detect what has actually changed in the binary of an
Android app compared to the previous release.

• We evaluate the precision and recall of our binary analyses
on the manually crafted ground truth of 30 releases of 3 open
source apps.

• We evaluate the technique on a dataset of over 12K release
notes.

The remainder of the paper is structured as follows. Section 2
presents our taxonomy of release notes, Section 3 describes each
component of the technique, and Section 4 presents the dataset and
the results of the evaluation. We conclude summarizing the related
work in Section 5 and conclude the paper.

2 WHAT’S NEW? ANDROID APP RELEASE
NOTES

App stores, such as the Google Play for Android and the Apple
store for iOS, are the main interface for users to find and install
apps on their mobile devices. In some cases, as it is for iOS devices,
they are the only viable channel for users to install software on
unrooted devices. While there is a plethora of research studies that
show how app store managers should improve the quality, security
and privacy of mobile apps on official stores [4], there are only a
few studies on the quality of the metadata that developers produce
along with their apps.

Figure 2: Sample description and release note in Android.

In Android, when developers publish a new release of their app,
they can update the general description of the application, and they
can specify what changes affect the new release compared to the
previous one. Fig 2 reports an example of a description together with
the release note of an Android app. In this example, the release note
of Whatsapp mentions a change in an existing feature, specifically
on how multiple voice messages would be played in a chat.

Release notes may be talking about different reasons for changes.
Previous taxonomies of release notes consider “new features”, “bug-
fixes” and “improvements” as the only reasons [5]. Since to the
best of our knowledge there is no prior work on classifying release
notes specifically for mobile apps, we manually analyze several
real samples to define a more suitable taxonomy. Concretely, we
manually inspect 1,200 release notes produced in 2018 regarding
1,000 different Android apps. We follow an iterative approach to
define the taxonomy: first, two authors independently analyze and
label the first 300 samples, identifying some classes of release notes.
Upon the agreement of all the authors on the relevance of each
class, we restart the process until we could not find any other rele-
vant class. Table 1 reports the nine topics that cover the taxonomy
used in this paper. Together with an assigned name, in the second
column, we present a brief explanation of our taxonomy in the last
column.

Name Description
INITIAL First release of the app
ANDROID Fixes/Features regarding a new Android version

PERMISSIONS Changes in the list of permissions requested by the
app

CONTENT Changes in resources used by the app. data/poli-
cies/resources

BUGFIXES One or more fix to the code to address an existing
bug.

IMPROVEMENTS Major changes to existing features
FEATURES New functionalities added
UICHANGES Changes in the user interface (e.g. new layout, new

icon set etc.)
NON-FUNCTIONAL Non functional optimization to the code involving

Performance/Security/Code
Table 1: Taxonomy of release notes in Android apps

ReChan: An Automated Analysis of Android App Release Notes to Report Inconsistencies MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

The first class, INITIAL, represents release notes that simply
state that this is the first public version of the app. The description
is usually little informative and very generic. Class ANDROID,
instead, includes release notes that explicitly state that the update
is about supporting a specific new Android release. We observe
several release notes of this type when a new major version of
the Android OS is released. PERMISSIONS class comprises release
notes that explicitly state that there were minor or major changes
in the list of permissions that the app requests, while CONTENT
includes all changes related to resources of the app (e.g. language
files, local application data) without changes in the code. We then
have three classes that detect changes in the code but at different
levels. Class BUGFIXES covers release notes that mention only
minor fixes to avoid known problems in existing functionalities.
IMPROVEMENTS covers release notes that mention major changes
to existing functionalities, while FEATURES covers descriptions of
new functionalities that the new release offers. Class UICHANGES
involves description of changes in the user interface (e.g. new icon-
set, new style, etc.). The last class covers release notes on NON-
FUNCTIONAL changes. This includes descriptions of optimization
or fixes of performance issues or security vulnerabilities.

Most release notes do not fall in a single category. It is in fact
very common for developers to release a new version of their apps
with improvements or new features, and at the same time fix sev-
eral known bugs. In the next section we explain how ReChan can
automatically classify release notes in natural language according
to this taxonomy, and can automatically identify mismatches based
on the actual changes in the code.

3 THE RECHAN TECHNIQUE
The goal of ReChan is to report mismatches between the release
note written in natural language of an Android app and the actual
changes in the binary code with respect to the previous version.
At a high level, ReChan works as listed in Figure 3. The technique
takes as input the natural language release note of an app, its corre-
sponding binary package in APK format, and the previous binary
release. The natural language analyzer checks the description of the

Figure 3: Overview of ReChan

release note, and classifies it according to the taxonomy presented
in Table 1. Similarly, the binary analyzer compares the binary re-
lease associated to the release note with the previous release binary.
It identifies the main differences, and classifies the changes accord-
ing to the same taxonomy. Once these two independent analyses
are done, ReChan checks the classification outcomes and reports
mismatches. We now proceed to explain the technical details of
each component.

3.1 Natural Language Analyzer
The goal of the natural language analyzer is to automatically classify
a release note written in natural language according to the taxon-
omy of Table 1. As already anticipated, each release note could
fall into multiple categories. For instance, “In-App Linking between
Micromedex Drug Reference (or Micromedex Drug Info – Mobile) and
Micromedex IV Compatibility. Updated functionality that allows for
streamlined acquisition of clinically relevant information between
applications. Functionality allows navigation between applications
with carrying forward of initial drug(s) search” should belong to
both FEATURES and IMPROVEMENTS classes. We initially consid-
ered the idea of parsing each sentence separately and classifying it
to unique class (in the example above the first sentence would be
classified as IMPROVEMENTS and the second one as FEATURES).
However we quickly realized that this approach is not feasible,
since very often developers write very short descriptions indicat-
ing multiple topics. “Bugfixes and improvements”, for instance, is a
commonly used description, and the same sentence describes two
of the categories that we identify in Table 1.

To deal with this multi-classification problem, we implement and
compare different techniques. Before that, ReChan applies some
common pre-processing steps.

Each description goes through a data cleaning phase (to remove
stopwords among other things), and descriptions that are in lan-
guages other than English are discarded. We then prepare the data
to be in the right format for whatever classifier component ReChan
has to use. We now describe each phase in details.

3.1.1 Pre-processing Steps. ReChan receives one JSON file per re-
lease note. Before processing each description, we need to make
sure that it contains a valid “what’s new” section (developers may
leave it empty). We also clean text fields of each entry from HTML
tags.

The Language Detection component identifies the main language
of each description. We resort to two libraries [6, 7] for this pur-
pose, since our first evaluation shows complementary abilities. We
assign a language tag only if there is an agreement between the
two, otherwise we consider the language as unknown. Our cur-
rent implementation does not support multi language descriptions.
However, in the future we could include at this stage the logic that
divides the description into multiple paragraphs and parses them
separately. ReChan currently only supports the English language.
We thus filter out any entry that we do not recognize as English
text.

ReChan includes a component for Data Preparation which trans-
forms release notes into a representation that can be processed by
specific classifiers later in the pipeline. Regardless of the strategy,
this component transforms the string representation of the textual

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Daniel Domínguez-Álvarez, Daniel Toniuc, and Alessandra Gorla

description into a higher level abstraction named Document. We
use this abstraction to decouple any natural language processing
library that operates on the texts from the rest of the implementa-
tion. We include convenience methods for tokenization, stemming,
word filtering, lemmatization and sentence splitting. We do not use
a standard stopwords list for word filtering, since some stop words
or non alphabetic tokens need to be excluded while others not.

The data preparation stage can also include a vectorization step,
to transform the data into a numerical representation needed by
some of the following strategies. The vectorizer has to follow the
design of sklearn1 (i.e. implement fit() and transform() methods).
In our implementation we use four such vectorization strategies:
Term Frequency, TF/IDF, LDA and Biterm.

3.1.2 Classifier Strategies. ReChan includes three strategies to clas-
sify text in the categories of our taxonomy: rule based, Naive Bayes
and SVM, and topic modeling.

Rule Based Topic Labeling. The rule based approach mimics the
process that a human annotator uses to observe patterns in the
texts. We define a set of rules through several iterations involv-
ing discussions of all authors. We started by observing the most
common words associated with each manually classified release
note to identify the taxonomy, and we include these words in the
rules (this process resembles keyword search). We soon realized
that pattern matching on individual words could not achieve good
performance, and this is when we introduced operator fields in our
rule format. Each rule returns True/False based on the application
of the operator on the text and on an auxiliary list of operands.
Table 2 presents the types of operator and their logic.

Rule Name Operand1 Operand2 Description
INCLUDE Text list(words) Returns True if any of the words

exists in text
EXCLUDE Text list(words) Returns True if none of the words

exists in text
OR Text list(rules) Applies the rules on text and returns

True if all of them are true
AND Text list(rules) Applies the rules on text and returns

True if any of them is true
NOT Text rule Apply the rule of text and returns

the result negated
Table 2: Rule operators

Adding operators increases the performance of ReChan signifi-
cantly based on our evaluation. We improve it even further thanks
to two more enhancements: our rules can restrict their scope to
single sentences. This feature is beneficial to reduce the number
of false positives when looking for word co-occurrences. More-
over, our rules support the feature to specify the part of speech for
operands. This allows to deal with cases where a word can have
different meanings based on its part of speech (e.g. issue means a
problem when it is a NOUN and the action of supplying an item
when it is a VERB). Using this mechanism we defined a list of 72
rules. 2

1https://scikit-learn.org/stable/
2We provide the full list of rules at https://tinyurl.com/rechan-ground-truth

Naive Bayes and SVM. The rule based approach has some lim-
itations when it comes to generalization. To explore alternative
solutions we turned our attention to design a completely automated
solution.

The first method we propose leverages classical text classifica-
tion algorithms, Naive Bayes and SVM, to assign labels to release
notes. The application of these algorithms in our context is not
straightforward, because they require a single label per item while
our release notes may belong to multiple classes. To overcome this
limitation, we train independent binary classifiers for each class.

Differently from the rule based approach, Naive Bayes and SVM
classifiers need to be trained before they can be used. For this we
create a separate task for training, using part of the labeled dataset.

Topic Modeling. We also use topic modeling algorithms to extract
latent semantics from cleaned release notes, and then apply classic
classification methods on the resulting topical distributions. We
support two topic modeling methods: LDA [8] and the Biterm Topic
Model[9] (which is suppose to perform better for short texts). Our
expectation was that topic models would identify finer topics or
hidden relations in our data, which would better fit the classifiers
and consequently increase the prediction performance.

Regardless of the strategy used, the natural language analyzer
classifies the release note according to one or more classes defined
in our taxonomy.

3.2 Binary Analyzer
The goal of this component is to analyze the binary package of the
Android app, and compare it with its previous release. We imple-
ment one or more specific static analyses to identify the changes
that we consider in our taxonomy reported in Table 1.

3.2.1 Class 1: Initial. In our dataset we have a few descriptions
of release note that simply say that this is the first version of the
app. This class is a corner case for our analysis, since in principle
there should be no previous binary file to compare the application
against. ReChan simply checks from all the sources we have access
to, if there is any version of the application prior to the one under
analysis. If it can find a previous release, then it flags the release
description as inaccurate.

3.2.2 Class 2: Android. This analysis aims to assess if the release
note addresses a change in the Android platform that the appli-
cation targets. We perform this analysis by simply checking the
information listed in the manifest file of the application. We report
that this is the case when we identify a change in the targetSdk,
minimumSdk, or maximumSdk fields of the manifest.

3.2.3 Class 3: Permissions. To identify changes that involve per-
missions, ReChan simply analyzes the Android manifest of the
application. It extracts the list of requested permissions, and it com-
pares it against the previously declared ones. It reports any relevant
change in the list of permissions. ReChan ignores the ordering of
the permissions and duplicates since they do not have any semantic
effect on the application.

3.2.4 Class 4: Content. To identify changes in the content of an
application we focus our analysis on the supporting files that the

https://tinyurl.com/rechan-ground-truth

ReChan: An Automated Analysis of Android App Release Notes to Report Inconsistencies MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

application includes. Files like sounds, images and language trans-
lations usually reside in the res/ and assets/ sub-folders of the APK
package. However, in these folders there are also user interface re-
lated files like layouts, animations, color palette definitions, which
are out of scope for this class.

The analysis thus consists in collecting all the files in the res/ and
assets/ sub-folders that are not XML binary files (since these are
the resources used in the user interface). For each file we compute
the sha256 hash of the content. By hashing the files we can see if a
file has changed even if the name is the same or, if a file is the same
despite having a different name. We compare the set of hashes in
each version of the application to determine whenever there has
been a change in the content or not.

3.2.5 Class 5: Bugfixes. For finding out if a release is a bug-fix,
we first need to calculate the ratio of change in the code that the
two versions have. To achieve this goal we include a component
in ReChan that calculates the ratio of change between the code
at the bytecode level and the new classes that exist in the newer
version of the application. This component serves as the foundation
for the 3.2.6 and 3.2.7 classes too. To implement this analysis we
take inspiration from a blog post by Quarkslab[10]. In this work we
expand on the original idea by first filtering out third party libraries
with Libradar [11].

The first step in our implementation is to filter out the business
logic from the standard library and third party libraries that might
be in the application. Since developer’s code is bundled with third
party libraries in the dex files, we use Libradar for detecting third
party libraries. We remove all classes that fall into the package
name of a known third party library detected by Libradar.

Once we have the list of classes that belong to application code,
we group them by their package name. Since developers usually
obfuscate Android apps on release, ReChan uses a heuristic to detect
if a class is obfuscated or not. Then, obfuscated classes are grouped
in the same package. The rationale behind grouping by package
name is that classes are unlikely to change their location unless the
developer makes a significant refactoring of the code.

For each class in the application we calculate its simhash[12].
This hash is more stable to small changes and will yield a similar
hash if two classes are similar. We calculate a 128bit hash divided
in four 32bit hashes. The first hash refers to information about the
class itself; public, private, abstract, final, if it is an interface, etc.
The second hash refers to the methods implemented in the class;
the number of methods, the type of method, the length of the code.
The third hash is similar to the second one, but is on class fields.
The forth and last one is the hash of the bytecode.

The end goal of this simhash is to calculate the nearest neighbors
in the previous version for each class in the newer version. This
selection gives us a coarse approximation of what classes are the
most related.

For each group of neighbors we then calculate the distance be-
tween the bytecode contained by each class. The neighbors are
ranked by this distance and we pick the closest one as the corre-
sponding class in the previous version. To calculate the distance, we
use the Levenshtein distance of an abstracted version of the byte-
code. We cannot use reliably the raw bytecode for this task, because
instructions may use different registers in different compilations.

In the original implementation the bytecode was categorized
in semantic families. For example, the invoke-* instructions were
categorized as invoke operations, and arithmetic operations were
all abstracted to the same arith operation. For our particular case
this broad categorization meant that, for instance, if a bug-fix in a
method involves a change between < and <=, we would not be able
to see it. For this reason, our abstraction only removes arguments
and registers from each instruction, and applies the distance on the
instruction’s names.

The last step involves normalizing all the numbers and returning
the aligned classes with their similarity score and the overall ratio
of change between versions. We align classes that we could not
align to any other class in the previous version to a dummy entry,
and set a similarity of 0% between the class and the dummy.

For a bug-fix, the expected ratio of change between versions
should be low. Thus, we consider any app that has a ratio of change
below 0.4% of change and is greater than 0% to be considered a
bug-fix.

3.2.6 Class 6: Improvements. When a new release includes im-
provements, the code should, intuitively, contain more changes
compared to just a bug-fix. For instance, rewriting a whole method
to improve its functionality will result in a bytecode very different
from its previous version. We consider an improvement of the code
base also the case adding new methods or new classes, without
exactly adding new features. Since we expect an improvement to
have more changes in the code compared to bug-fixes, we resort
to the same analysis we implemented to identify bug-fixes, but we
consider a release to belong to this class when the rate of change is
above 0.4% of change.

3.2.7 Class 7: Features. We consider a new version to contain new
features if it has new functionalities that the user can see and inter-
act with. For instance, if there are new buttons, menus or other UI
elements that lead to new code that did not exist before. Function-
alities in Android are often implemented as separate Activities.

ReChan implements a diff analysis to identify new features using
two checks: 1) it reports differences if the new version contains
a class that inherits from Activity which does not appear in the
previous release of the application, or 2) there are changes in the
layout files included in the application.

3.2.8 Class8: UI Changes. In Android applications the user inter-
face files are written in XML, and then compiled to a binary XML
format. These files are included in an internal folder res/, separated
in folders by their type (layout, animation, menu, etc) and other
properties like Android version or screen resolution. For instance,
layout-sw600dp-v21will contain layouts that are used in the version
21 of Android and screens with 600dp. In order for the developer
to change the UI of the application, he or she must edit these files.

Therefore, we expect a diff between version to contain changes
in the user interface if it has changes in those files. To run this
check, we take all the binary XML files that are in the res/ folder,
and calculate the sha256 hashes of each of them. Then, if there are
different hashes between the two file lists, we consider that a user
interface file has changed and therefore we consider the release
change as belonging to this class.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Daniel Domínguez-Álvarez, Daniel Toniuc, and Alessandra Gorla

3.2.9 Class 9: Non-functional. Some release may address non func-
tional changes. Theymay include security patches (as theWhatsapp
example presented in Section 1), or they may improve the perfor-
mance of the application. ReChan currently cannot identify this
class of changes, but rather classifies them as improvements or
features. The challenge of automatically classifying these changes
is that the analysis should consider the semantic of the changes,
and this is beyond the scope of this paper.

3.3 Report Mismatches
ReChan compares the classification done on the description in
natural language and on the binary and it analyzes mismatch. Our
binary analysis assumes that when there are new features there is
also a visible change in the UI. Thus it does not report a mismatch
if the release note does not mention UI changes when it mentions
new features.

4 EVALUATION
We evaluate ReChan according to the following research questions:

• RQ1: How accurate is the natural language analyzer in clas-
sifying release notes? Relying on our manually labeled sam-
ples, we compute precision and recall, and we compare the
performance of all classifiers that ReChan implements. We
also report the distribution of release notes across topics on
the whole dataset.

• RQ2: How accurate is the binary analysis component in
classifying the changes across two releases? Relying on the
manually crafted ground truth of 30 releases of 3 open source
applications we compute precision and recall and perform a
qualitative analysis of the results.

• RQ3: How often does binary analysis produce a matching
result with the natural language classifier? This study aims
to quantify how analysis on code and on the description
agree on the type of release.

• RQ4: What cases can ReChan reveal when analyses produce
a mismatch? This study is a qualitative analysis of some of
the cases we have in our dataset.

We now discuss the dataset, and later present each research
question.

4.1 Dataset
For the evaluation of ReChan we need a dataset of applications with
release notes, corresponding binary file and the previous release
of the same application. For this purpose we used Tacyt, a large
database owned by ElevenPaths (Telefonica). This database col-
lects information about Android and iOS application across several
stores, and it stores binary files and metadata.

The platform offers a query language that allows filtering the
applications according to certain criteria. We set our filter to obtain
applications that published releases in 2018 and that were published
in the Google Play store.

After running the queries we obtain a dataset of 29,647 releases
from January of 2018 to mid June of 2018. Filtering out the entries
with no message in the “recent_changes” field (i.e. the “What’s new
message”) or entries without binaries, reduces the dataset to 18,018
releases. We further remove HTML tags from the messages, and

Topic Train set Test set
PR Recall F1 PR Recall F1

ANDROID 0.99 0.92 0.95 0.93 0.82 0.87
BUGFIXES 0.99 0.98 0.98 0.96 0.99 0.98
CONTENT 0.75 0.53 0.62 0.88 0.41 0.56
FEATURES 0.80 0.14 0.24 0.55 0.01 0.22

IMPROVEMENTS 0.89 0.67 0.77 0.97 0.66 0.79
INITIAL 0.83 0.79 0.81 0.67 0.50 0.57

NON-FUNCTIONAL 0.92 0.89 0.91 0.87 0.92 0.90
PERMISSIONS 0.93 1.00 0.96 0.50 1.00 0.67
UICHANGES 0.92 0.84 0.88 0.91 0.77 0.84

Table 3: Classification results using Rule Based method

apply the language detection process described in Section 3.1.1. By
filtering out applications with non English release notes, we reduce
the dataset to 12,706 releases.

From this dataset we randomly sample 1,200 entries, and label
them manually with topics, as explained in Section 2. We further
divide the labeled dataset in a training dataset (1,000 entries) and a
test dataset (200 entries) to use with classifiers that require training.
We look for previous binary releases in our reference database.
Out of the 1,200 manually labeled cases, we only found 103 cases.
All these cases, though, are carefully checked, and we have high
confidence that there are no (or very few) releases between the two
samples we use for our analysis.

4.2 RQ1: Accuracy of Natural Language
Classification

We use the 72 rules that we produced to label the entries with the
predefined categories. We built the rule set by iteratively analyzing
the training dataset of 1,200 entries and the classification results
on that very same set. To avoid overfitting the data, we refrained
from running the classification on the test set until we considered
the rules completed. We analyze the performance of this solution
by running the classification and looking at the precision, recall
and F1 scores for both the train and the test set, and we report the
results in Table 3.

The performance of the rule based strategy is surprisingly good
for most of the categories. Furthermore, checking the difference
between the results on the training and test set, we see that the
solution did not overfit the train dataset.

We need to mention that the results obtained on the test set for
the categories “INITIAL” and “PERMISSIONS” may not be reliable
due to the small number of positive samples in the set. Second, we
can observe that for very specific categories such as “ANDROID”
and “BUGFIXES”, the performance is higher than for the more gen-
eral categories. This is also because developers tend to use clear key-
words (e.g. Android release or bugfix) almost always in these type
of release notes. Third, the results for the “FEATURES” category are
much worse than for the others. This is because descriptions in this
category are application specific, and it is hard to define general
rules without overfitting on the data. Developers, in fact, tend to
describe the new feature (as in the example in Figure 2), rather than
using general terms such as “New features’. ’Lastly, we note the
very good performance on the “NON-FUNCTIONAL” class which,
even though is quite a broad topic, is represented in the texts by few

ReChan: An Automated Analysis of Android App Release Notes to Report Inconsistencies MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Figure 4: Performance (F1 score) comparison of classifica-
tion algorithms

common expressions (e.g. “performance optimizations”, “increased
speed”).

The rule based is the best performing classifier overall. We now
briefly comment on the other solutions we evaluated.

Naive Bayes and SVM. The vectorization of the data was done
using term frequency for Naive Bayes and TF/IDF for SVM.We tried
different variants of these algorithms to select the best fitting one
for our situation. For Naive Bayes we compared the performance
of Multinomial NB with Complement NB by running 10 iterations
on the training set and selecting 80% of the data for training the
algorithms and 20% for testing. Results show that Complement NB
performs slightly better than Multinomial NB.

For SVMwe tried both Linear SVM, which is often recommended
for texts, and One Class SVM which was used in prior works [13].
Unfortunately, the results for One Class SVM were completely
unsatisfactory with the classifier yielding all entries as negative
for most of the classes. Once the optimal configurations for both
classifiers were selected, we trained them using the training set and
run them against the test set. Because the number of examples for
the “INITIAL” and “PERMISSIONS” topics was too small, and the
classifiers could not learn any relevant models, we removed those
topics from the analysis.

The results show a slightly better performance for the SVM
classifier compared to Naive Bayes for most of the topics. For “BUG-
FIXES” and “OPTIMIZATIONS” the performance is higher than for
the others, probably because there are few terms used to express
the changes in these categories. Unlike for the rule based approach,
the “ANDROID” category does not obtain such high results with
the automatic classifiers.

Topic Modeling. Since the dataset contains short texts, which
are not adequate for data classification, we tried to enhance the
performance by using a topic modeling method to transform each
text from a distribution over a vocabulary of words to a distribution
over a set of topics. There are prior works in literature that resort
to this technique. Hong et al [14] mention using topics from text
as supplementary features in text classification, while Phan X. et
al [15] extract auxiliary topics from a large “universal corpus” to
enhance the performance of their algorithm. In our context there

Figure 5: Distribution of release notes into categories

are two main reasons why this solution is potentially interesting:
a linguistic one and a statistical one. From the statistical point of
view, we expect that topic modeling would group common fea-
tures of similar texts and would allow the classifier to operate on
a smaller and better divided space. From the linguistic point of
view, we expect that topic modeling would produce a finer grained
distribution of topics, compared to our high level taxonomy, and
that each of these new topics will be a subtopic in our taxonomy.
For topic modeling we trained LDA[8] and Biterm[9] models using
the entire dataset of 12,706 entries, from which we extracted the
test set. These algorithms require that the number of topics is set a
priori. We tried multiple options in the range 10-100. We did not
explore values over 100 topics because in our manual exploration of
the texts, we saw that they are quite clustered around some general
themes and, even though more specific topics than ours can be
found, their number cannot be very big.

Naive Bayes performs better than SVM when combined with
both topic modeling algorithms. Given the reduced dimensional
of the data, we suspect the reason is that NB can learn faster. In
terms of classification performance, we see that relatively good
results are obtained for “BUGFIXES”, while for other categories
the results are not as good as expected. Probably the reason why
the “BUGFIXES” category performs better is that it is very clearly
defined in the original texts. Comparing the results obtained with
LDA and Bitermwe can see that they are similar, with slightly better
scores obtained by LDA. One reason for the poor performance of
Biterm can be the small number of iterations (100) we used when
we ran the algorithm. We had to select this small number because
the Biterm library we used [16] is very slow and does not allow for
parallelization.

Figure 4 summarizes the results with a comparison of the F1
scores of all the solutions on each class. We use the best strategy
among our solutions to classify the whole dataset of release notes.
Figure 5 reports this information.

4.3 RQ2: Accuracy of Binary Analysis
Classification

In order to evaluate the accuracy of the heuristics we implement
in the binary analysis component, we manually craft the ground
truth of 30 releases by looking at the actual changes in the code
between two subsequent releases. For this purpose we look for

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Daniel Domínguez-Álvarez, Daniel Toniuc, and Alessandra Gorla

open source applications on F-droid satisfying the following con-
ditions: 1) the repository should have at least 10 releases, 2) each
release should specify the associated commit and should have the
corresponding pre-compiled binary from developers, in order to
avoid bias in building it ourselves, and 3) the app should be mostly
in Java or Kotlin, since our analyses support only Dalvik bytecode
and not native code. Following these criteria we select three apps:
AnkiDroid, a flashcard-based study app, Markor, a todo and notes
editor, and MTG Familiar, an app that offers utilities to play the
Magic card game.

For these apps we select the most recent release and keep it only
if both the selected and its previous release have binary files. When
this is not the case, we discard both releases and continue with
the preceding ones. We thus obtain 10 release deltas for each app,
and for each of them we analyze each commit among releases to
classify the type of change according to our taxonomy. We finally
use our ground truth [17] to compute the accuracy of our analyses
for each class. Table 4 reports the results.

Class Precision Recall F-score
Permissions 1.00 1.00 1.00
Android 1.00 1.00 1.00
Content 0.96 1.00 0.98

UI-changes 1.00 1.00 1.00
Bugfixes 0.50 0.29 0.37

Improvements 0.82 1.00 0.90
Features 0.78 1.00 0.88

Table 4: Precision, Recall and F-score of the binary analysis
classification.

We note that the performance of ReChan is very good for most
classes, except for bugfixes. We now discuss some insights of the
manual analysis of all the false positives and false negatives against
the ground truth.

ReChan seems to miss a change regarding permissions. We in-
vestigated the problem and we found out that the binary release
actually did not have any change in the list of permissions, and
thus is in accordance with ReChan, making recall 1 for this class.
This is likely an example of a hotfix when producing the release
binary which is not reflected in the repository. ReChan reports
one false positive for class content. This is because it detects that
the changelog file changes, and developers included this file in the
resources. ReChan is less accurate when it comes to distinguish
whether changes in the code address new features, improve existing
code or simply fix bugs. The worst performance clearly affects the
bugfix category, where ReChan suffers many false positives and
false negatives. A closer look at the data reveals that 75% of the false
negatives are in the MTG app, which has a single developer who
tends to create less releases with multiple changes and multiple
bugfixes at once. For all these cases ReChan flags these bugfixes
as improvements, since the portions of changed code is very large.
Despite the bad performance of distinguishing large bugfixes from
improvements, we can say that our heuristics are very effective.

4.4 RQ3: Reporting Mismatches
We run the binary analysis of ReChan on the binary pairs for which
we have the ground truth regarding the release note. Since we do
not have the ground truth on the actual changes in the code, in this
study we just report the mismatches with the classification of the
release note, taking this latter as the correct one, and we analyze
them in detail in the next section.

Table 5 reports the results for each category according to this
classification:

• AP (Agree Positive): Binary and natural language analyses
agree that the release belongs to a specific category.

• AN (Agree Negative): Binary and natural language analyses
agree that the release does not belong to a specific category.

• MB (Miss Binary): The release note says the app belongs to
a category, the binary analysis does not.

• MRN: (Miss Release Note): The binary analysis says the app
belongs to a category, the release note does not.

MB could actually be errors in the release note descriptions
(i.e. the developer describes the release note as a bugfix, but it has
essential changes that go beyond that). MRN, instead, could actually
be omissions of the developers in describing the release note (as
the Whatsapp example in Figure 1).

AP AN MB MRN
Permissions 0.97% 66.99% 0.97% 31.07%
Android 6.80% 60.19% 4.85% 28.16%
Bugfixes 51.46% 17.48% 2.91% 28.16%
Improvements 13.59% 35.92% 9.71% 40.78%
Content 26.21% 10.68% 0.00% 63.11%
Features 24.27% 10.68% 1.94% 63.11%
UI changes 17.48% 15.53% 3.88% 63.11%

Table 5: Percentage of matches and mismatches when com-
pared to the ground truth of the release note.MRN are likely
omissions in the descriptions.

From the low AP rate and the high MRN rate, we can deduce that
developers usually do not mention that there has been a change in
the permissions list. In general this practice of not clearly describing
the reason of the change in the code affects classes Android (1 in
4 release notes do not mention these changes in the description),
and especially Content, for which nearly 80% of the new releases
include changes in the supporting files that are packaged with the
applications, but only 26% of the developers mentioned it in the
release note.

Bugfixes is the most common class according to our binary anal-
ysis, with a 51% of cases marked as containing bugfixes. However,
79% of the analyzed applications contain changes in the bytecode
small enough to be considered as bugfixes. One third of those ap-
plications are not marked as bugfixes in the release. We believe the
reason for the mismatch could be that in those cases developers
introduce improvements in the code, but such improvements did
not change the bytecode much, and therefore our heuristics fail.
Another reason could be that the changes happen in the native
code, which we do not analyze.

ReChan: An Automated Analysis of Android App Release Notes to Report Inconsistencies MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

Half of the analyzed applications contain mayor changes in the
code, which is what we consider an improvement. The majority
of the cases are not marked as containing improvements however.
This can be due to developers assuming that improvements are
intrinsic to releasing a new version. Or likely developers add new
functionalities that our binary analysis considers improvements,
but developers consider as new features.

80% of the cases contain changes in the files related to the UI,
while only around 17% of release notes mention changes in the
user interface, either functional or cosmetic changes. This case is
very similar to the content class, and we believe that developers
simply do not consider necessary to mention changes in the re-
sources folder unless it affects what the user actually cares about:
new functionality (15% of the cases) or new content that the user
interacts with (26% of the cases).

4.5 RQ4: Qualitative Analysis
We perform a qualitative analysis of most of the cases that we
analyze with ReChan. This analysis allows us to understand in
more detail the reasons of the mismatches, i.e. that either the binary
analysis is not able to detect relevant changes or it detects changes
that are not mentioned in the release note.

Some of the applications are tagged as BUGFIXES, FEATURES
or IMPROVEMENTS but we could not see any of that in the output
of our static analyses. After manual inspection, we found that these
cases were applications programmed in languages different than
Java/Kotlin. Most of those cases were C/C++ games, but we also
found a Xamarin application. Since our tool only supports Dalvik
bytecode, the static analysis missed these relevant changes. On the
other side of the spectrum, a hybrid application developed in JS
changed the version of the underlying framework between releases
because of a security vulnerability reported in the framework. This
major change confuses our static analysis tool, because it yields big
changes in the application, but the release note only mentioned the
update because of a security issue. Some of the applications that are
marked as containing Android related changes were not detected as
such. After manually inspecting the release note and both versions,
we found that most of the applications made changes in the code
related to the change in the permission model in Android 6. Other
applications introduce changes related to Android Oreo. One in
particular introduces an Adaptive Icon, a new feature in Android
Oreo, that needs to be implemented as a XML file in the res/ folder.
This change would be detected as the UICHANGE class instead
of the correct ANDROID class. We detect cases where the release
note advertises changes in the UI or claims new features, however
the static analysis could not detect these cases. These releases im-
plement changes that dynamically change the UI. This means that
unfortunately we cannot detect them with static analysis. Other
releases are labeled as IMPROVEMENTS and BUGFIXES. In the
cases where the rate of change between releases is too high, ReChan
will classify as BUGFIXES too, beside IMPROVEMENTS. We also
have opposite cases where changes are too small, but developers
believe these are actual IMPROVEMENTS. Another limitation of
our static analysis on the bytecode is obfuscation. Despite being
resilient to obfuscation, we assume that both releases are obfus-
cated. We found one example where obfuscation was introduced

between the releases we analyze. This causes package names to
change completely, and confuses the clustering step of our analysis.
We tried to disable the clustering step for this case, and we con-
firm that ReChan is able to correctly match the classes, albeit more
slowly. For the future we plan to use a Merkle tree as data structure
to group packages based on their structure rather than relying on
their names. Out of the 1,200 release notes that were manually
labeled, 19 of them were classified as initial release of the applica-
tion. Most of them were indeed the first version of the application.
However, one particular case, an application called MYVIDEO has
10 prior versions to the one we analyzed. The release note for that
release is “init”. We also check the prior release notes to discard the
possibility of a sloppy developer who did not changed the release
note since the inception of the application. That is not the case,
since the other release notes contain more meaningful messages
compared to the one in our dataset. Of the applications that we
statically analyzed there are 32 applications with changes in their
permission list, without mentioning anything in the release note.
Some are harmless permissions, but there are applications request-
ing access to the location, sms, audio and video record, and other
dangerous permissions. One particular case request the permission
WRITE_SETTINGS that according to the Android documentation
should not be used by normal applications [18].

5 RELATEDWORK
There is a large body of work that involves the analysis of mobile
app stores [4]. We now briefly discuss related work regarding the
analysis of natural language artifacts, diffing binary files, and the
analysis of releases.

Analysis of Android Natural Language Artifacts. In [19] the au-
thors aim to provide more personalized app classification and hence
better app search experience for the users. The approach relies on
contextual enhancement of each application and a Maximum En-
tropy classifier to divide applications into categories.

With an average of 22 reviews per day for each application [20]
user reviews build up to a consistent source of information ready to
be analyzed for the benefit of users, developers and vendors. Thus
many papers analyze these artifacts for instance to identify fre-
quent complaints (functional errors, feature requests, app crashes)
and most negatively impacting complaints (privacy and ethical fea-
tures, hidden costs) [21]. Guzman et al [22] try different classifiers
to sort reviews according to a defined taxonomy. More complex
solutions try to gain a deeper understanding of the reviews. Custom
rule based solutions can be developed to collect specified details
such as in [23] where 237 rules were used to extract features and
features request. Or even mixed solutions such as in [24] where a
combination of rules to process natural language, sentiment analy-
sis and, statistical information from text is used to group reviews
in the categories of a predefined taxonomy. While the previously
presented studies use predefined categories or hardcoded rules,
others use topic modeling solutions to allow the categories to be
driven by the data. AR-miner [25] provides an automatic solution
for information extraction from app store’s user reviews, which
can help developers and managers get an insight on the problems
that need to be addressed. [26] implements a similar approach to

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Daniel Domínguez-Álvarez, Daniel Toniuc, and Alessandra Gorla

extract information at micro level (one review), meso level (app
related reviews) and macro level (entire store).

Beside user reviews, there are few studies dealing with app de-
scriptions. Having a clear description of what an application does
will help elevate the users concerns, and hence will bring benefits
for both the users and the developers. Furthermore, potential mal-
ware application can be identified since these will avoid describing
their real behavior [13, 27–29].

Binary diffing. Binary diffing aims to extract the similarities and
differences between two binaries. It is used in scenarios where
source code is not available like patch diffing for exploit generation
or malware analysis. The biggest challenges in binary diffing are
code obfuscation and compiler optimizations. Both techniques can
modify the form of the binary to the point where a naive analysis
fails. No matter how obfuscated a binary is, its semantics will be
similar to a non-obfuscated version of the same program. For that
reason, recent research has focused on extracting the semantics
of the binaries. Luo et al [30] aim to detect software plagiarism by
extracting the semantics of each basic block as a set of equations
and solves the similarity using a theorem prover. This similarity is
then used to find the longest common sub-sequence of semantically
equivalent basic blocks. This technique shares with ReChan the idea
of matching the sequence with a fuzzy matching algorithm, but our
tool focuses in sequences of Dalvik instructions instead. Bourquin
et al [31] use a combination of the well-known BinDiff algorithm in-
troduced byHalvar Flake in 2004 [32] with the Hungarian algorithm
for bipartite graph matching [33]. The authors report that matching
accuracy improves significantly compared to only using BinDiff.
Some techniques, like function inlining, alter the inter-procedural
graph or the intra-procedural graph of a binary. Tools that only fo-
cus on the intra-procedural graph can see its effectiveness reduced
because of this alterations. Ming et al [34] propose a technique that
relies on taint analysis and automatic input generation for finding
semantic differences in the inter-procedural graph. This semantic
properties can overcome such obfuscation techniques because they
cross the procedural boundaries and thus, they are not affected by
the shape of the CFGs. Programs compiled with different optimiza-
tion options or different compilers can have very different binaries
as a result. Egele et al [35] propose a dynamic analysis technique to
overcome this problem. The technique emulates the functions of the
target binaries and extracts the side effects produced in a controlled
environment. Two functions are matched if they share similar side
effects under the same environment. [36] presents another tech-
nique for avoiding obfuscation in binaries. It combines static and
dynamic analysis to record traces of syscalls during the execution
of a program. This trace is converted to a slice that represents the
instructions that affect in any way the trace. From the slices the
technique extracts a set of equations for each slice that are checked
for equivalence using a solver.

Release Analysis . There exist studies on how the behavior changes
across different releases of the same Android app [37–41]. Martin
et al. analyze a large number of app releases and their correspond-
ing reviews from users. They observe that over one third of the
releases cause a change in user ratings [42]. Xia et al. instead, use
machine learning techniques to effectively predict mobile app re-
leases that are more likely to crash [43]. Last but not least, Khomh

et al. show how shorter release cycles lead to better quality per-
ceived by users [44]. Nayebi et al., aim to study the release practices
in mobile development. Their analysis is based on surveys of de-
velopers and users rather than on actual data retrieved from app
stores [45]. Moreno at al. focus on the quality of release notes as
we do in this paper, but propose to automatically generate them
from actual code changes [2, 3]. Their solution, however, can only
be applied when source code is available, which is not the case for
us. Mostafa et al. study behavioral backward compatibility of Java
libraries, and among other findings they show that the majority of
behavioral backward incompatibilities are not well documented in
API documents or release notes [46]. This supports our finding that
Android app release notes often omit important changes as well.

In our previous work we studied the release practice in mobile
apps, comparing how developers produce releases on the Android
and iOS platform [47]. That work, however does not analyze bi-
nary files, but mostly focus on release dates. Hassan et al. studied
the release notes of 1,000 emergency updates on the Google Play
store, and they found that developers rarely explain the reasons
of the update [48]. They manually analyzed the binary changes to
understand why developers urged to produce a new release, and
they found 8 reasons, mostly associated to simple development
mistakes. While our work is similar to theirs in terms of analyzing
binary files and release notes in Android apps, our work is more
general and automated, while their work is manual and focuses
only on few specific releases. The same authors studied also bad
updates in Android, and found that bad updates with crashes and
functional issues are the most likely to be fixed by a later update.
However, developers often do not mention these fixes in the release
notes [49]. This finding again partially confirms what we observe in
our study. Similarly, Roseiro et al. study same-day releases that are
published by popular packages in the npm ecosystem. Their man-
ual analysis of the existing release notes suggests that same-day
releases introduce non-trivial changes, but mostly bug fixes [50].

6 CONCLUSIONS
We presented ReChan, a novel technique to automatically detect
mismatches between release notes of Android applications and the
actual changes in the code. We defined a taxonomy of 9 release cat-
egories by manually tagging 1,200 real samples, and we evaluated
several solution to automatically classify release notes written in
English. Our evaluation shows that a rule-based approach works
better than classic classifier techniques and better than topic model-
ing. We then presented several specific analyses to detect different
class of changes in the code. Despite the many limitations of the
analyses we could get to interesting findings: Our evaluation shows
that on a dataset of 12,706 Android apps, developers tend to cor-
rectly report changes due to bug fixes and new features, but tend
to omit changes that affect the list of requested permissions, the UI
and other content that the app uses.

ACKNOWLEDGMENTS
This work was partially supported by the Spanish Government’s
SCUMgrant RTI2018-102043-B-I00, Grant RYC2020-030800-I funded
by MCIN, the Madrid Regional project BLOQUES S2018/TCS-4339,
and gifts from Facebook.

ReChan: An Automated Analysis of Android App Release Notes to Report Inconsistencies MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] “Facebook cve 2019-3568,” 2020, https://www.facebook.com/security/advisories/

cve-2019-3568.
[2] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora, “Auto-

matic generation of release notes,” in FSE 2014: Proceedings of the ACM SIGSOFT
22nd Symposium on the Foundations of Software Engineering, November 2014, pp.
484–495.

[3] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and G. Canfora, “ARENA:
An approach for the automated generation of release notes,” IEEE Transactions
on Software Engineering, vol. 43, no. 2, pp. 106–127, February 2017.

[4] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app store
analysis for software engineering,” IEEE Transactions on Software Engineering,
vol. 43, no. 9, pp. 817–847, 2016.

[5] S. L. Abebe, N. Ali, and A. E. Hassan, “An empirical study of software release
notes,” Journal of Empirical Software Engineering, vol. 21, no. 3, p. 1107–1142,
June 2016.

[6] “Langid library,” 2020, https://pypi.org/project/langid.
[7] “Polyglot library,” 2020, https://pypi.org/project/polyglot.
[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of

Machine Learning Research, vol. 3, no. January, pp. 993–1022, 2003.
[9] X. Cheng, X. Yan, Y. Lan, and J. Guo, “Btm: Topic modeling over short texts,” IEEE

Transactions on Knowledge and Data Engineering, vol. 26, no. 12, pp. 2928–2941,
December 2014.

[10] “Android application diffing: Engine overview,” https://blog.quarkslab.com/
android-application-diffing-engine-overview.html, (Accessed on 08/23/2020).

[11] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate detection
of third-party libraries in android apps,” in ICSE 2016: Proceedings of the 38th
International Conference on Software Engineering, Austin, TX, USA, May 2016, pp.
653–656.

[12] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,”
in STOC 2002: Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, Montréal, Québec, Canada, May 2002, pp. 380–388.

[13] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior against
app descriptions,” in ICSE 2014: Proceedings of the 36th International Conference
on Software Engineering, Hyderabad, India, June 2014, pp. 1025–1035.

[14] L. Hong and B. D. Davison, “Empirical study of topicmodeling in twitter,” in SOMA
2010: Proceedings of the First Workshop on Social Media Analytics, Washington
D.C., USA, July 2010, pp. 80–88.

[15] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi, “Learning to classify short and
sparse text & web with hidden topics from large-scale data collections,” inWWW
2008: Proceedings of the 17th International World Wide Web Conference, Beijing,
China, April 2008, pp. 91–100.

[16] “Biterm library,” 2020, https://pypi.org/project/biterm/.
[17] “Rechan material,” 2020, https://tinyurl.com/rechan-ground-truth.
[18] “Android documentation,” 2020, https://developer.android.com/guide/topics/

permissions/overview#special_permissions.
[19] H. Zhu, E. Chen, H. Xiong, H. Cao, and J. Tian, “Mobile app classification with

enriched contextual information,” IEEE Transactions on Mobile Computing, vol. 13,
no. 7, pp. 1550–1563, 2013.

[20] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,”
in RE 2013: Proceedings of the 21st Requirements Engineering Conference, Rio de
Janeiro, RJ, Brazil, July 2013, pp. 125–134.

[21] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile app users
complain about?” IEEE Software, vol. 32, pp. 70–77, January 2014.

[22] E. Guzman, M. El-Haliby, and B. Bruegge, “Ensemble methods for app review
classification: An approach for software evolution,” in ASE 2015: Proceedings of
the 30th Annual International Conference on Automated Software Engineering,
Lincoln, NE, USA, November 2015, pp. 771–776.

[23] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature requests
from online reviews,” in MSR 2013: 10th Working Conference on Mining Software
Repositories, San Francisco, CA, USA, May 2013, pp. 41–44.

[24] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall,
“How can i improve my app? classifying user reviews for software maintenance
and evolution,” in ICSME 2015: 2015 IEEE International Conference on Software
Maintenance and Evolution, Bremen, Germany, September 2015, pp. 281–290.

[25] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “Ar-miner: Mining informative
reviews for developers from mobile app marketplace,” in ICSE 2014: Proceedings
of the 36th International Conference on Software Engineering, Hyderabad, India,
June 2014, pp. 767–778.

[26] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people hate your
app: Making sense of user feedback in a mobile app store,” in SIGKDD 2013: 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Chicago, Illinois, USA, August 2013, pp. 1276–1284.

[27] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Expectation and
purpose: understanding users’ mental models of mobile app privacy through
crowdsourcing,” in UbiComp 2012: Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, September 2012, pp. 501–510.

[28] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards automating
risk assessment of mobile applications,” in USENIX Security: 22nd USENIX Security
Symposium, Washington, DC, USA, August 2013, pp. 527–542.

[29] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog: Measuring
the description-to-permission fidelity in android applications,” in CCS 2014: Pro-
ceedings of the 21st ACM Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 2014, pp. 1354–1365.

[30] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism
detection,” in FSE 2014: Proceedings of the ACM SIGSOFT 22nd Symposium on the
Foundations of Software Engineering, November 2014, pp. 389–400.

[31] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison of binary
executables1,” in PPREW ’13: Proceedings of the 2nd ACM SIGPLAN Program
Protection and Reverse Engineering Workshop, 2013.

[32] H. Flake, “Structural comparison of executable objects,” in DIMVA 2004: Detection
of Intrusions and Malware & Vulnerability Assessment, GI SIG SIDAR Workshop,
Dortmund, Germany, July 2004, pp. 161–173.

[33] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics, vol. 2, no. 1-2, pp. 83–97, 1955.

[34] J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-procedural
control flow,” in ICISC 2012: 15th International Conference on Information Security
and Cryptology, Seoul, Korea, December 2012, pp. 92–109.

[35] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution: Dynamic
similarity testing for program binaries and components,” in USENIX Security: 23rd
USENIX Security Symposium, San Diego, CA, USA, August 2014, pp. 303–317.

[36] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic binary diffing
via system call sliced segment equivalence checking,” in USENIX Security: 26th
USENIX Security Symposium, Vancouver, BC, Canada, August 2017, pp. 253–270.

[37] P. Calciati, K. Kuznetsov, B. Xue, and A. Gorla, “What did really change with the
new release of the app?” in MSR 2018: 15th International Conference on Mining
Software Repositories, Gothenburg, Sweden, May 2018, pp. 142–152.

[38] P. Calciati and A. Gorla, “How do apps evolve in their permission requests? a
preliminary study,” inMSR 2017: 14th International Conference on Mining Software
Repositories. Buenos Aires, Argentina: IEEE Computer Society, May 2017, pp.
37–41.

[39] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez,
“Bug fixes, improvements, ... and privacy leaks,” in NDSS 2018: 25th Annual Sym-
posium on Network and Distributed System Security, February 2018.

[40] A. Feal, P. Calciati, N. Vallina-Rodriguez, C. Troncoso, and A. Gorla, “Angel
or devil? a privacy study of mobile parental control apps,” in The 20th Privacy
Enhancing Technologies Symposium (PoPETs 2020.2), July 2020, pp. 314—-335.

[41] P. Calciati, K. Kuznetsov, A. Gorla, and A. Zeller, “Automatically granted per-
missions in android apps,” in MSR 2020: 17th International Conference on Mining
Software Repositories, Seul, South Korea, May 2020, pp. 114—-124.

[42] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app releases in
Google Play,” in FSE 2016: Proceedings of the ACM SIGSOFT 24th Symposium on
the Foundations of Software Engineering, Seattle, WA, USA, November 2016, pp.
435–446.

[43] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing releases of
mobile applications,” in ESEM 2016: Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, Ciudad Real,
Spain, September 2016, pp. 29:1–29:10.

[44] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases improve software
quality?: An empirical case study of mozilla firefox,” in MSR 2012: 9th Working
Conference on Mining Software Repositories, Zurich, Switzerland, May 2012, pp.
179–188.

[45] M. Nayebi, B. Adams, and G. Ruhe, “Release practices in mobile apps -– users
and developers perception,” in SANER 2016: 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering, Osaka, Japan, March 2016, pp.
552–562.

[46] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: a study on behavioral
backward incompatibilities of java software libraries,” in ISSTA 2017: Proceedings
of the 26th International Symposium on Software Testing and Analysis, Santa
Barbara, CA, USA, July 2017, pp. 215–225.

[47] D. Domínguez-Álvarez and A. Gorla, “Release practices for ios and android apps,”
in WAMA 2019: Proceedings of the 4nd International Workshop on App Market
Analytics, 2019, pp. 15–18.

[48] S. Hassan, W. Shang, and A. E. Hassan, “An empirical study of emergency updates
for top android mobile apps,” Journal of Empirical Software Engineering, vol. 22,
no. 1, pp. 505–546, 2017.

[49] S. Hassan, C. Bezemer, and A. E. Hassan, “Studying bad updates of top free-to-
download apps in the google play store,” IEEE Transactions on Software Engineer-
ing, vol. 46, no. 7, pp. 773–793, 2020.

[50] F. R. Côgo, G. A. Oliva, C. Bezemer, and A. E. Hassan, “An empirical study of same-
day releases of popular packages in the npm ecosystem,” Journal of Empirical
Software Engineering, vol. 26, no. 5, p. 89, 2021.

https://www.facebook.com/security/advisories/cve-2019-3568
https://www.facebook.com/security/advisories/cve-2019-3568
https://pypi.org/project/langid
https://pypi.org/project/polyglot
https://blog.quarkslab.com/android-application-diffing-engine-overview.html
https://blog.quarkslab.com/android-application-diffing-engine-overview.html
https://pypi.org/project/biterm/
https://tinyurl.com/rechan-ground-truth
https://developer.android.com/guide/topics/permissions/overview#special_permissions
https://developer.android.com/guide/topics/permissions/overview#special_permissions

	Abstract
	1 Introduction
	2 What's new? Android App Release Notes
	3 The ReChan Technique
	3.1 Natural Language Analyzer
	3.2 Binary Analyzer
	3.3 Report Mismatches

	4 Evaluation
	4.1 Dataset
	4.2 RQ1: Accuracy of Natural Language Classification
	4.3 RQ2: Accuracy of Binary Analysis Classification
	4.4 RQ3: Reporting Mismatches
	4.5 RQ4: Qualitative Analysis

	5 Related Work
	6 Conclusions
	References

